科研管理系统提供搜集发布:
激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。
该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然·光子学》在线发表。

GFB晶体器件
非线性光学晶体是获得不同波长激光的物质条件,在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,对最终激光输出的功率和效率有重要影响。目前有多种技术方案可弥补相位失配,其中,利用晶体各向异性的双折射相位匹配技术是应用最广泛的有效途径。但现有晶体均存在双折射相位匹配波长损失,即晶体最短相位匹配波长与紫外截止边存在差距。
团队前期提出一种假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?在此基础上,该团队创制一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,可以实现晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率<0.02%,依然可以实现倍频激光输出,验证了其全波段相位匹配特性,该晶体也是目前首例实现了全波段双折射相位匹配的紫外/深紫外非线性光学晶体材料。研究结果表明,宽的相位匹配波长范围使GFB晶体透光范围得到充分应用,可实现1064nm激光器二、三、四、五倍频高效、大能量输出,有望满足半导体晶圆检测等领域的重大需求。更重要的是,GFB可采用水溶液法生长出高质量、超大尺寸晶体,使其有望成为应用于大科学装置的新晶体材料。

利用GFB晶体进行激光实验
成天软件《科研管理系统 》提供。
本文转载自:科学网。文章为作者独立观点,不代表成天立场,转载请联系原作者。
点击量:245
高校科研管理系统
高校科研管理系统,融合流程门户,知识管理,项目管理,合同管理等,构建一体化管控平台.解决学校教育信息管控痛点,多系统集成,跨平台信息共享
医院科研管理系统
五星科研专注于医疗信息化行业,为用户提供行业软件产品的部署、培训、实施服务;帮助医院行业用户全面提升管理效率
研究院所科研管理系统
研究院所科研管理系统 完善的科研项目生命周期管理机制; 清晰的项目管理流程跟踪,保证项目按计划完成目标。 灵活可变的管理流程配置,为流程管理提供全面周到支撑
申报评审管理系统
申报评审软件利用确保对客观管控驾驭快捷制订考核管控战略,且能够利用信息处理确保战略足以精准。评估管控不需要人为反复输入数据单位见识深远的成长策略单位管控软件的开发基本。
科研创新服务平台
科研人员、科研管理员可以通过科研创新服务平台更方便得查看科研创新系统数据,办理科研业务。系统内置微信小程序、微信公众号、钉钉小程序等